..
大家好,我是苏三。Kafka 是一款性能非常优秀的消息队列,每秒处理的消息体量可以达到千万级别。今天来聊一聊 Kafka 高性能背后的技术原理。最近整理了一份10万字的面试宝典,可以免费送给大家,获取方式加我微信:su_san_java,备...
A股板块轮动加剧,跨年大妖来袭,这几只票主力已明显介入!微信搜索关注【研讯小组】公众号(可长按复制),回复666,领取代码!
大家好,我是苏三。
Kafka 是一款性能非常优秀的消息队列,每秒处理的消息体量可以达到千万级别。今天来聊一聊 Kafka 高性能背后的技术原理。
最近整理了一份10万字的面试宝典,可以免费送给大家,获取方式加我微信:su_san_java,备注:面试。
Kafka 收发消息都是批量进行处理的。我们看一下 Kafka 生产者发送消息的代码:
privateFuture
TopicPartitiontp=null;
try{
//省略前面代码
CallbackinterceptCallback=newInterceptorCallback<>(callback,this.interceptors,tp);
//把消息追加到之前缓存的这一批消息上
RecordAccumulator.RecordAppendResultresult=accumulator.append(tp,timestamp,serializedKey,
serializedValue,headers,interceptCallback,remainingWaitMs);
//积累到设置的缓存大小,则发送出去
if(result.batchIsFull||result.newBatchCreated){
log.trace("Wakingupthesendersincetopic{}partition{}iseitherfullorgettinganewbatch",record.topic(),partition);
this.sender.wakeup();
}
returnresult.future;
//handlingexceptionsandrecordtheerrors;
//forAPIexceptionsreturntheminthefuture,
//forotherexceptionsthrowdirectly
}catch/**省略catch代码*/
}
从代码中可以看到,生产者调用 doSend 方法后,并不会直接把消息发送出去,而是把消息缓存起来,缓存消息量达到配置的批量大小后,才会发送出去。
注意:从上面 accumulator.append 代码可以看到,一批消息属于同一个 topic 下面的同一个 partition。
Broker 收到消息后,并不会把批量消息解析成单条消息后落盘,而是作为批量消息进行落盘,同时也会把批量消息直接同步给其他副本。
消费者拉取消息,也不会按照单条进行拉取,而是按照批量进行拉取,拉取到一批消息后,再解析成单条消息进行消费。
使用批量收发消息,减轻了客户端和 Broker 的交互次数,提升了 Broker 处理能力。
如果消息体比较大,Kafka 消息吞吐量要达到千万级别,网卡支持的网络传输带宽会是一个瓶颈。Kafka 的解决方案是消息压缩。发送消息时,如果增加参数 compression.type,就可以开启消息压缩:
publicstaticvoidmain(String[]args){
Propertiesprops=newProperties();
props.put("bootstrap.servers","localhost:9092");
props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
//开启消息压缩
props.put("compression.type","gzip");
Producer
ProducerRecord
producer.send(record,newCallback(){
@Override
publicvoidonCompletion(RecordMetadatametadata,Exceptionexception){
if(exception!=null){
logger.error("sendingmessage error:", e);
}else{
logger.info("sendingmessage successful, Offset:", metadata.offset());
}
}
});
producer.close();
}
如果 compression.type 的值设置为 none,则不开启压缩。那消息是在什么时候进行压缩呢?前面提到过,生产者缓存一批消息后才会发送,在发送这批消息之前就会进行压缩,代码如下:
publicRecordAppendResultappend(TopicPartitiontp,
longtimestamp,
byte[]key,
byte[]value,
Header[]headers,
Callbackcallback,
longmaxTimeToBlock)throwsInterruptedException{
//...
try{
//...
buffer=free.allocate(size,maxTimeToBlock);
synchronized(dq){
//...
RecordAppendResultappendResult=tryAppend(timestamp,key,value,headers,callback,dq);
if(appendResult!=null){
//Somebodyelsefoundusabatch,returntheonewewaitedfor!Hopefullythisdoesn'thappenoften...
returnappendResult;
}
//这批消息缓存已满,这里进行压缩
MemoryRecordsBuilderrecordsBuilder=recordsBuilder(buffer,maxUsableMagic);
ProducerBatchbatch=newProducerBatch(tp,recordsBuilder,time.milliseconds());
FutureRecordMetadatafuture=Utils.notNull(batch.tryAppend(timestamp,key,value,headers,callback,time.milliseconds()));
dq.addLast(batch);
incomplete.add(batch);
//Don'tdeallocatethisbufferinthefinallyblockasit'sbeingusedintherecordbatch
buffer=null;
returnnewRecordAppendResult(future,dq.size()>1||batch.isFull(),true);
}
}finally{
if(buffer!=null)
free.deallocate(buffer);
appendsInProgress.decrementAndGet();
}
}
上面的 recordsBuilder 方法最终调用了下面 MemoryRecordsBuilder 的构造方法。
publicMemoryRecordsBuilder(ByteBufferOutputStreambufferStream,
bytemagic,
CompressionTypecompressionType,
TimestampTypetimestampType,
longbaseOffset,
longlogAppendTime,
longproducerId,
shortproducerEpoch,
intbaseSequence,
booleanisTransactional,
booleanisControlBatch,
intpartitionLeaderEpoch,
intwriteLimit){
//省略其他代码
this.appendStream=newDataOutputStream(compressionType.wrapForOutput(this.bufferStream,magic));
}
上面的 wrapForOutput 方法会根据配置的压缩算法进行压缩或者选择不压缩。目前 Kafka 支持的压缩算法包括:gzip、snappy、lz4,从 2.1.0 版本开始,Kafka 支持 Zstandard 算法。
在 Broker 端,会解压 header 做一些校验,但不会解压消息体。消息体的解压是在消费端,消费者拉取到一批消息后,首先会进行解压,然后进行消息处理。
因为压缩和解压都是耗费 CPU 的操作,所以在开启消息压缩时,也要考虑生产者和消费者的 CPU 资源情况。
有了消息批量收集和压缩,kafka 生产者发送消息的过程如下图:
顺序读写省去了寻址的时间,只要一次寻址,就可以连续读写。
在固态硬盘上,顺序读写的性能是随机读写的好几倍。而在机械硬盘上,寻址时需要移动磁头,这个机械运动会花费很多时间,因此机械硬盘的顺序读写性能是随机读写的几十倍。
Kafka 的 Broker 在写消息数据时,首先为每个 Partition 创建一个文件,然后把数据顺序地追加到该文件对应的磁盘空间中,如果这个文件写满了,就再创建一个新文件继续追加写。这样大大减少了寻址时间,提高了读写性能。
在 Linux 系统中,所有文件 IO 操作都要通过 PageCache,PageCache 是磁盘文件在内存中建立的缓存。当应用程序读写文件时,并不会直接读写磁盘上的文件,而是操作 PageCache。
应用程序写文件时,都先会把数据写入 PageCache,然后操作系统定期地将 PageCache 的数据写到磁盘上。如下图:
而应用程序在读取文件数据时,首先会判断数据是否在 PageCache 中,如果在则直接读取,如果不在,则读取磁盘,并且将数据缓存到 PageCache。
Kafka 充分利用了 PageCache 的优势,当生产者生产消息的速率和消费者消费消息的速率差不多时,Kafka 基本可以不用落盘就能完成消息的传输。
Kafka Broker 将消息发送给消费端时,即使命中了 PageCache,也需要将 PageCache 中的数据先复制到应用程序的内存空间,然后从应用程序的内存空间复制到 Socket 缓存区,将数据发送出去。如下图:
Kafka 采用了零拷贝技术把数据直接从 PageCache 复制到 Socket 缓冲区中,这样数据不用复制到用户态的内存空间,同时 DMA 控制器直接完成数据复制,不需要 CPU 参与。如下图:
Java 零拷贝技术采用 FileChannel.transferTo() 方法,底层调用了 sendfile 方法。
Kafka 的日志文件分为数据文件(.log)和索引文件(.index),Kafka 为了提高索引文件的读取性能,对索引文件采用了 mmap 内存映射,将索引文件映射到进程的内存空间,这样读取索引文件就不需要从磁盘进行读取。如下图:
本文介绍了 Kafka 实现高性能用到的关键技术,这些技术可以为我们学习和工作提供参考。
最后欢迎加入苏三的星球,你将获得:商城系统实战、秒杀系统实战、代码生成工具、系统设计、性能优化、技术选型、高频面试题、底层原理、Spring源码解读、工作经验分享、痛点问题等多个优质专栏。
我的技术成长之路
我的三个项目
被官方推荐了
还有1V1答疑、修改简历、职业规划、送书活动、技术交流。
目前星球已经更新了4300+篇优质内容,还在持续爆肝中..星球已经被官方推荐了3次,收到了小伙伴们的一致好评。戳我加入学习,已有1300+小伙伴加入学习。
我的技术专栏《程序员最常见的100个问题》,目前已经更新了75+篇干货文章,里面收录了很多踩坑经历,对你的职业生涯或许有些帮助,最近收到的好评挺多的。
这个专栏总结了我10年工作中,遇到过的100个非常有代表性的技术问题,非常有参考和学习价值。
Java、Spring、分布式、高并发、数据库、海量数据、线上问题什么都有。
每篇文章从发现问题、分析问题、解决问题和问题总结等多个维度,深入浅出,分享了很多技术细节,定位和排查问题思路,解决问题技巧,以及实际工作经验。
你能从中学到很多有用知识,帮你少走很多弯路。
扫描下方二维码即可订阅:
原价199,现价只需23,即将涨价。
A股板块轮动加剧,跨年大妖来袭,这几只票主力已明显介入!微信搜索关注【研讯小组】公众号(可长按复制),回复666,领取代码!
本站内容转载请注明来源并提供链接,数据来自互联网,仅供参考。如发现侵权行为,请联系我们删除涉嫌侵权内容。
你合并代码用 merge 还是用 rebase ?(苏三说技术2024年08月01日文章)
阿里云盘,出现灾难级Bug(苏三说技术2024年09月16日文章)
突发,EasyExcel宣布停更了!(苏三说技术2024年11月10日文章)
Mysql很慢,除了索引,还能因为什么?(苏三说技术2024年07月29日文章)
架构师必须懂这些。。。(苏三说技术2024年10月31日文章)
几行烂代码,用错Transactional,赔了16万。(苏三说技术2024年07月30日文章)
架构师必须掌握这些技术。。。(苏三说技术2024年08月31日文章)
瞧瞧别人家的异常处理,那叫一个优雅(苏三说技术2024年10月24日文章)
阿里神器 Seata(苏三说技术2024年10月19日文章)
裁员了,很严重,大家做好准备吧!(苏三说技术2024年09月04日文章)
版权投诉请发邮件到1191009458#qq.com(把#改成@),我们会尽快处理
Copyright©2023-2024众股360(www.zgu360.com).AllReserved|备案号:湘ICP备2023009521号-3
本站资源均收集整理于互联网,其著作权归原作者所有,如有侵犯你的版权,请来信告知,我们将及时下架删除相应资源
Copyright © 2024-2024 EYOUCMS. 易优CMS 版权所有 Powered by EyouCms